Jordan River TMDL A Phased Approach to Getting at the Source

Carl Adams
Utah Division of Water Quality

Eric Duffin
Cirrus Ecological Solutions

Wednesday, August 31, 2011 2011 Utah Water Quality Conference Logan, Utah

Outline of Presentation

- Background on TMDLs
- Jordan River Impaired Segments
- OM is Cause of Jordan River DO Impairment
- Phased TMDL Right for Jordan River
- Organic Matter Details and Model
- Phase 1 TMDL
- Next Phases
- Summary

What is a "TMDL"?

- Establishes "Maximum Daily Load" of pollutant to meet WQ standards
- Required for 303(d) list of impaired water bodies
- Must identify natural and anthropogenic sources of pollution
 - Point sources vs. Nonpoint sources
 - Margin of Safety (MOS) to address uncertainty

Jordan River Segments and Impairments

- Beneficial Uses
 - Class 2B-Recreation
 - All segments
 - Class 3A (Cold Water Aquatic)
 - Segment 4-7
 - Class 3B (Warm Water Aquatic)
 - •Segment 1-4, 8
 - Class 4 (Agriculture)
 - All segments
- Impairments
 - Dissolved Oxygen
 - Total Dissolved Solids
 - Total Suspended Solids
 - Temperature (high)
 - Escherichia coli

What causes DO impairment?

Processes

- 1. Physical limitations: temperature, solubility, reaeration
- 2. Algal growth and respiration
- 3. Decomposition in water column (BOD)
- 4. Decomposition in sediments (SOD)

Jordan River TMDL Assessment Method

- Data collection and review (1995-2008)
- Synoptic and diurnal monitoring
- Water quality models (QUAL2Kw)

Results

- Nutrient reduction has minimal effect on DO
- Jordan River DO most responsive to organic matter
- SOD highly significant
- DO standards can be met by reducing OM concentrations year round

Phased TMDLs

Must know:

- Pollutant causing impairment
- Amount of pollutant reduction to remove impairment

Allows uncertainty:

- Sources
- Timing and fate of pollutants

Going forward:

- Schedule for refining wasteload and load allocations
- Collection of additional data
- TMDL revised with more specific implementation actions

Why is it Right for the Jordan River?

- Not enough certainty at this time to justify significant capital investments
- Uncertainties:
 - Characteristics of OM (sources, composition, transport, fate, and seasonal patterns)
 - Effectiveness of strategies to reduce OM
 - Effect of reducing suspended OM loads on DO without first removing the OM that already exists in the sediments
 - Loading from individual sources
 - Ecological effects
- Phased approach provides for additional studies

Phased approach to implementing this TMDL is appropriate

OM in the Jordan River

Point sources: Stormwater, Wastewater Treatment Plants

Nonpoint Sources: Diffuse Runoff, Irrigation Return, Natural Background,

Tributaries, Utah Lake.

Model Response to OM Reductions (August 2009)

No reduction of OM from Utah Lake					
Percent	VSS - 2100 S	Avg SOD - lower	Min DO (mg/L)		
Existing	(mg/L)	Jordan River (gO2/m2/d)	Cudahy	Burnham	
100%	5.7	3.4	5.2	4.8	
90%	5.3	3.0	5.4	5.0	
80%	4.9	2.7	5.6	5.3	
70%	4.5	2.4	5.8	5.5	
60%	4.1	2.0	6.0	5.7	
50%	3.7	1.7	6.2	6.0	
40%	3.3	1.3	6.4	6.2	
30%	2.9	1.0	6.6	6.4	
20%	2.5	0.7	6.7	6.7	
10%	2.1	0.3	6.9	6.9	
Response with EQUAL reduction to Utah Lake					
70%	4.3	2.4	5.8	5.5	

Methods to Measure OM Volatile Suspended Solids (VSS)

ed Solids

size

to extend OM data record

Methods to Measure OM Biochemical Oxygen Demand (BOD)

- Oxygen consumed during aerobic decomposition
- Widely used surrogate to indicate OM content in water
 - Does not account for OM in sediment
- OM:BOD Relationship defined by OM:Carbon:Oxygen ratios
 - Quantifies Oxygen lost to decomposition process

Calculating Total OM Pollutant Loads Total OM = FPOM + Other OM

- FPOM ~ Volatile Suspended Solids(VSS)
 - Measured directly during 5 synoptic events
- Pollutant loads at source based on :
 - FPOM loads at source determined from data that correlates with FPOM including TSS or BOD
 - Source loads are then transported downstream to 2100 South after accounting for losses based on travel time, rates of settling and dissolution, and diversions

Calculating Total OM Pollutant Loads Total OM = FPOM + Other OM

- Other OM ~ represented by prescribed SOD in QUAL2kW model.
- Prescribed rate suggests accumulation over long periods of time.
- Standard protocol to measure CPOM does not exist.
- Prescribed rate (g O₂/m²/d) converted to equivalent OM daily load.
- Other OM loads allocated between sources based on annual flow contributions.

Total OM loads to the lower Jordan River (kg/yr)

,	Sources	Current Loads at the Source	Current Loads to Lower Jordan River
Point Sources	Upstream of 2100 South	2,757,817	469,062
	Downstream of 2100 South	824,264	824,264
Nonpoint Sources	Upstream of 2100 South	6,941,909	752,429
	Downstream of 2100 South	303,749	303,749
Total		10,827,739	2,349,504

Jordan River TMDL

Bulk Allocation Existing OM loads (kg/yr) I	Lower Jordan River
---	--------------------

Source		Loads to Lower Jordan	Contribution (%)	Permissible Loads	Reduction (%)
	Upstream of 2100 South	469,062	20%	284,996	39%
Point Sources	Downstream of 2100 South	824,264	35%	482,096	42%
	Upstream of 2100 South	752,429	32%	546,205	27%
Nonpoint Sources	Downstream of 2100 South	303,749	13%	140,439	54%
Total		2,349,504	100%	1,453,736	38%

Phased TMDL Adaptive Implementation Plan Timeline

Phase II (2011-2018):

- Continued monitoring: DO, stormwater
- Organic matter budget: When, where, how affect DO
- Outreach and education
- Reasonably affordable strategies to reduce OM loads
- Refine source loads and MOS for Total OM
- Submit revised TMDL for EPA approval in April 2018

Phase III (2018-2023)

- Adopt revised TMDL
- Design work on point and nonpoint sources to meet allocations
- Design and implement BMPs for stormwater

Phase IV (2023–2028)

- Construction upgrades for point sources and nonpoint sources
- Meet all DO water quality standards.

Summary

- Phase I: Identification of OM as the pollutant
 - Development of models to calculate loading
- Phase II: Intense and targeted data collection
 - Implementation of behavioral and procedural changes for citizens and facilities
- Phase III: Final design
- Phase IV: Construction, if necessary

Both point and nonpoint sources will bear responsibility to reduce OM loads to achieve the DO standards

QUAL2Kw model results (August 2009)

Margin of Safety (MOS)

201,967 (37%)

342,168 (38%)

444,898 (39%)

201,967 (37%)

233,082 (36%)

264,197 (36%)

295,312 (36%)

321,570 (36%)

405,409 (36%)

622,296

482,096

379,366

131,078 (24%)

206,224 (23%)

254,999 (22%)

131,078 (24%)

162,145 (25%)

193,213 (26%)

224,281 (27%)

250,499 (28%)

334,211 (29%)

621,351

546,205

497,430

2,349,504

549,887

895,767

1,138,220

549,887

639,867

729,848

819,829

895,767

1,138,220

1,799,617

1,453,736

1,211,284

110,343 (20%)

163,309 (18%)

194,377 (17%)

110,343 (20%)

120,014 (19%)

129,684 (18%)

139,354 (17%)

147,515 (16%)

173,572 (15%)

193,405

140,439

109,372

		Ivial 911	or Sar	ety (IVIC	
Existing Load	s into lower Jo	ordan River (all implicit	MOS scenarios)		
		469,062	824,264	752,429	303,749
Load Reducti	on into the Lo	wer Jordan River with	% total reduction		

106,498 (19%)

184,066 (21%)

243,946 (21%)

106,498 (19%)

124,626 (19%)

142,754 (20%)

160,883 (20%)

176,182 (20%)

225,028 (20%)

362,564

284,996

225,116

Load Reduction Scenarios associated with a 0 mg/L implicit MOS.

Implicit MOS

Implicit MOS

Implicit MOS

Explicit MOS

Explicit MOS

Explicit MOS

Explicit MOS

Explicit MOS

Explicit MOS

Implicit MOS

Implicit MOS

Implicit MOS

0 mg/L

(4.5 mg/L)

endpoint)

1.0 mg/L (5.5 mg/L)

endpoint)

1.5 mg/L (6.0 mg/L)

endpoint)

0%

5%

10%

15%

19%

33%

Permissible Loads into lower Jordan River

0 mg/L

1.0 mg/L

1.5 mg/L

OM Results

OM loads contributing to SOD in the lower Jordan River (kg/yr)

		Load at Source	Load to Lower Jordan River	Percent Contribution to Lower Jordan River
Point Sources	Above 2100 South	132,724	25,551	5.8%
Upstr	eam 2100 2	210 <u>0</u> 0 \$ =	68%	9.9%
Nonpoint	Above 2100 South	npoint =	850/83	62.4%
Sources	Below 2100 South	96,884	96,884	22.0%
Total				
		2,367,882	441,022	100.0%